Extensions 1→N→G→Q→1 with N=C23 and Q=C5×A4

Direct product G=N×Q with N=C23 and Q=C5×A4
dρLabelID
A4×C22×C10120A4xC2^2xC10480,1208

Semidirect products G=N:Q with N=C23 and Q=C5×A4
extensionφ:Q→Aut NdρLabelID
C231(C5×A4) = C5×C24⋊C6φ: C5×A4/C5A4 ⊆ Aut C23406C2^3:1(C5xA4)480,656
C232(C5×A4) = C5×C23⋊A4φ: C5×A4/C5A4 ⊆ Aut C23404C2^3:2(C5xA4)480,1134
C233(C5×A4) = C10×C22⋊A4φ: C5×A4/C2×C10C3 ⊆ Aut C2360C2^3:3(C5xA4)480,1209

Non-split extensions G=N.Q with N=C23 and Q=C5×A4
extensionφ:Q→Aut NdρLabelID
C23.1(C5×A4) = C5×C42⋊C6φ: C5×A4/C5A4 ⊆ Aut C23806C2^3.1(C5xA4)480,657
C23.2(C5×A4) = C5×C23.A4φ: C5×A4/C5A4 ⊆ Aut C23606C2^3.2(C5xA4)480,658
C23.3(C5×A4) = C5×C23.3A4φ: C5×A4/C2×C10C3 ⊆ Aut C23606C2^3.3(C5xA4)480,74
C23.4(C5×A4) = C10×C42⋊C3φ: C5×A4/C2×C10C3 ⊆ Aut C23603C2^3.4(C5xA4)480,654
C23.5(C5×A4) = C5×Q8⋊A4φ: C5×A4/C2×C10C3 ⊆ Aut C231206C2^3.5(C5xA4)480,1133
C23.6(C5×A4) = C2×C10×SL2(𝔽3)central extension (φ=1)160C2^3.6(C5xA4)480,1128

׿
×
𝔽